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Abstract: Obstructive sleep apnea (OSA) is characterized by repetitive episodes of upper airway
obstruction caused by a loss of upper airway dilator muscle tone during sleep and an inadequate
compensatory response by these muscles in the context of an anatomically compromised airway.
The genioglossus (GG) is the main upper airway dilator muscle. Currently, continuous positive airway
pressure is the first-line treatment for OSA. Nevertheless, problems related to poor adherence have
been described in some groups of patients. In recent years, new OSA treatment strategies have been
developed to improve GG function. (A) Hypoglossal nerve electrical stimulation leads to significant
improvements in objective (apnea-hypopnea index, or AHI) and subjective measurements of OSA
severity, but its invasive nature limits its application. (B) A recently introduced combination of drugs
administered orally before bedtime reduces AHI and improves the responsiveness of the GG. (C)
Finally, myofunctional therapy also decreases AHI, and it might be considered in combination with
other treatments. Our objective is to review these therapies in order to advance current understanding
of the prospects for alternative OSA treatments.

Keywords: Genioglossus muscle; sleep apnea; pharmacological treatment; hypoglossal nerve
electrical stimulation; myofunctional therapy

1. Introduction

Obstructive sleep apnea (OSA) is a frequent condition characterized by a normal breathing
pattern during wakefulness but repetitive episodes of upper airway obstruction during sleep [1].
These respiratory events (apneas or hypopneas) are due to a sleep-induced imbalance between
the upper airway load (soft tissues and bony structures surrounding the upper airway can reduce
the size of the resting pharynx) and upper airway dilator muscle tone (an alteration in dynamic
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neuromuscular response) (Figure 1) [2]. The severity of this disorder is usually expressed as the number
of apnea/hypopnea events per hour of sleep time (apnea/hypopnea index or AHI).
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When etiological treatment is not possible or if, as usual, there is a multifactorial origin, continuous 
positive airway pressure (CPAP: positive pressure that keeps the upper airway open during sleep) is 
the gold-standard treatment for OSA patients [9]. Although CPAP is an effective treatment that can 
completely abolish respiratory events, it is associated with several difficulties. Above all, however, 
the main limitations of CPAP are its acceptance problems and a lack of continuous patient adherence 
in many cases, which may explain why randomized clinical trials failed to improve major health-
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Figure 1. Representation of the imbalance produced during sleep between the loads on the upper
airway and the function upper airway dilator muscles in obstructive sleep apnea (OSA) patients.

In addition to its high prevalence [3], OSA has an important impact on quality of life [4] and
increases the risk of accidents [5] as well as neurobehavioral and cardiovascular morbidity [6]. Therefore,
the control of apneic events through appropriate treatment has a remarkable degree of clinical relevance
and a large sociosanitary impact. Nevertheless, OSA is a heterogeneous and multifactorial condition
whose treatment is not always easy and must be personalized for every patient [7].

Many OSA patients are obese, and the overloading of the upper airway during sleep is often a
result of obesity because the increase in adipose tissue around the pharynx facilitates its collapse [8].
However, obesity is not the only risk factor for OSA. Tonsillar and adenoid hypertrophy, craniofacial
abnormalities, and enlarged soft tissues around the pharynx are also common in these patients [2].
When reversible factors such as these are identified, the first-line therapy should be aimed at resolving
these conditions (intensive lifestyle intervention, bariatric surgery, tonsillectomy, etc.). When etiological
treatment is not possible or if, as usual, there is a multifactorial origin, continuous positive airway
pressure (CPAP: positive pressure that keeps the upper airway open during sleep) is the gold-standard
treatment for OSA patients [9]. Although CPAP is an effective treatment that can completely abolish
respiratory events, it is associated with several difficulties. Above all, however, the main limitations of
CPAP are its acceptance problems and a lack of continuous patient adherence in many cases, which
may explain why randomized clinical trials failed to improve major health-threatening outcomes in
non-sleepy subjects [10,11]. As an alternative, oral appliances (OAs: a device that enlarges the pharynx
by moving the tongue and soft palate forward) are used to treat OSA in some subgroups of patients,
mainly in non-obese patients with mild to moderate OSA or in severe OSA patients who are unable to
use CPAP, but not as a first-line therapy for severe OSA. Although OAs are better tolerated, their efficacy
is lower than that of CPAP and has considerable interindividual variability [12]. Clearly, OSA treatment
is not uniform or simple. This issue is due to OSA’s multicomponent origin and the need to implement
treatment in a personalized manner, with combined therapy as a possibility. Since there is no ideal
treatment that applies to all patient types, improved knowledge of OSA pathophysiology will lead to
important advances in its control. The previously mentioned treatment strategies focus on reducing
collapsing upper airway forces; however, improving the dynamic neuromuscular response during
sleep could also be effective for maintaining an open upper airway. Strategies aimed at improving the
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upper airway dilator muscle response might be useful for OSA treatment, at least in a certain group
of patients.

Therefore, knowledge and understanding of the pathogenetic basis of OSA are important to
implement new therapeutic strategies. As the genioglossus (GG) is the main dilator muscle of the
upper airway, increasing the activity of this muscle and preventing hypotonia during sleep would be
a promising therapeutic approach. The aim of this review is to describe and evaluate the evidence
that supports new strategies targeted to improve GG dilator function in an attempt to increase upper
airway patency in OSA patients.

2. Search Strategy and Study Selection

To perform a systematic review on the most important aspects of this relationship, we analyzed the
literature to detect all papers providing knowledge on the association in the PubMed, Web of Science,
and Cochrane Library databases from inception to June 2019, focusing on the identification of reports
about any interventions on the GG muscle in OSA patients. The studies were required to have a precise
methodology while clearly presenting the importance and limitations of their results in the interpretation
of the evaluated association. Studies were detected using the terms “sleep apnea” and “genioglossus
muscle.” Three authors (O.M., S.R.-P., and P.R.) assessed the retrieved abstracts and full text of these
studies to establish eligibility according to the inclusion criteria mentioned below. The inclusion
criteria were as follows: (1) English articles published in peer-reviewed journals, (2) studies providing
information targeted in the genioglossus muscle, and (3) studies of individuals with OSA. The exclusion
criteria were as follows: (1) studies with fewer than 10 OSA patients; (2) editorials, case reports,
and letters; and (3) studies conducted in children and adolescents (age <18 years). The first literature
screening identified a total of 395 studies, and an additional nine articles previously identified by the
authors were added. After the initial search of titles and abstracts, 185 articles were removed. A total of
219 full-text articles were assessed for eligibility, of which 184 were excluded: 38 studies did not include
information about interventions targeting the GG, 145 studies did not include patients with OSA,
and one study included patients with other respiratory disorders. Ultimately, 35 studies contained
sufficient data to qualify for the present review and were included in our narrative synthesis (Figure 2).
After locating and selecting these studies, we summarized the available evidence on electrical nerve
stimulation, pharmacological treatment and myofunctional therapy. Finally, we considered their
clinical applications.

There have been previous reviews in relation to emerging treatments for OSA, but this review adds
to the field by focusing on a common strategy—increasing genioglossus muscle activity to improve
OSA. Herein, we summarize these therapies and describe their clinical application. Furthermore, this
review focuses on treatments that aim to improve the function of the genioglossus muscle after initial
positive results from pharmacological treatments.
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Figure 2. Schematic flow chart for the selection of studies.

3. The Genioglossus Muscle

The upper airway is a structure that consists of the nasal, pharyngeal, and laryngeal regions. It has
a relevant role in three important human functions—breathing, swallowing, and speaking. The upper
airway lacks rigid bony support to perform these important functions, with the surrounding muscles
being responsible for its permeability; therefore, the upper airway is susceptible to collapsing forces.
The upper airway is surrounded at least by 20 dilator muscles, and some are important for stabilizing
and dilating it during sleep. The GG is one of the most extensively studied upper airway dilator
muscles because of its accessibility and representativity, playing a very important role in upper airway
patency during sleep [13]. From the mental symphysis of the mandible, the GG muscle enters the
dorsum of the tongue; its main functions are tongue depression and protrusion [14]. The medial
branch of the hypoglossal nerve innervates this muscle (Figure 3), decreasing muscle activity during
expiration and increasing it during inspiration.
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Figure 3. Hypoglossal nerve: course and branches. The genioglossus (GG) muscle is innervated by the
medial branch of the hypoglossal nerve, increasing muscle activity during inspiration and reducing it
during expiration. 1: correct position for electrical nerve stimulation.

The three major inputs of GG activity are the sleep–wake state, a central pattern generator and
chemo/mechanoreceptors. The most sleep state–related change that affects respiratory neural drive is
the transition from wake to sleep, which decreases GG activity and increases upper airway resistance
(Figure 4) [15]. The anatomical deficits existing in OSA patients are actively compensated by the upper
airway dilator muscles during wakefulness. At the onset of sleep, GG activity falls farther and more
quickly in OSA patients than in healthy subjects, producing upper airway obstruction (Figure 5) [13].
As the GG muscle is critical for maintaining upper airway patency during sleep and wakefulness,
it has been proposed as a therapeutic target. Several therapeutic approaches are focused on different
techniques to improve GG function in OSA patients.
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during sleep and upper airway collapsibility in OSA patients. Starting from this known 
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Hypoglossal nerve stimulation devices typically comprise an implantable pulse generator (IPG) 
that is situated surgically in an infraclavicular subcutaneous pocket superficial to the pectoralis major 
muscle within the chest wall (Figure 6 and 7). An electrode cuff attached to the IPG wraps around 
the distal portion of the hypoglossal nerve [13,21]. These hypoglossal nerve stimulation systems can 
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An intimate understanding of N. XII anatomy is required, along with intraoperative 
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Figure 5. Image of the upper airway seen by magnetic resonance and its collapsibility in patients with
OSA and anatomical description of the upper airway (left); representation of (1) normal breathing: 1:
the pharynx; 2: the larynx; 3: the genioglossus muscle; 4: the epiglottis; 5: the hard palate; and 6: the
soft palate; (2) partial upper airway obstruction; and (3) complete obstruction of the upper airway.

4. Nerve Electrical Stimulation

Nerve electrical stimulation plays an increasingly significant role in OSA treatment, especially in
those patients who do not tolerate CPAP. The target of electrical stimulation is the hypoglossal nerve
(N. XII), the motor nerve that innervates the tongue muscles with the exception of the palatoglossus.
Through stimulation of specific hypoglossal nerve fibers, the upper airway can be opened by protruding
the tongue (Figure 3 represented by number 1).

In 1978, Remmers et al. [16] suggested a direct association between loss of GG muscle activity during
sleep and upper airway collapsibility in OSA patients. Starting from this known pathophysiology,
the hypothesis that OSA could be treated by neuromuscular electrical stimulation of the upper airway
dilator muscles current to maintain upper airway patency during sleep has been developed [17]. Miki
et al. [18] conducted initial human studies examining the tolerability and efficacy of upper airway
stimulation (UAS); nevertheless, Schwartz et al. [19] did not report the result of stimulation of the
hypoglossal nerve with respect to OSA in an animal model until 1993. Moreover, it was in 2001 that
Schwartz et al. [20] described the implantation of a neurostimulator acting selectively on the fibers of
the hypoglossal nerve that control tongue protrusion.

Hypoglossal nerve stimulation devices typically comprise an implantable pulse generator (IPG)
that is situated surgically in an infraclavicular subcutaneous pocket superficial to the pectoralis major
muscle within the chest wall (Figures 6 and 7). An electrode cuff attached to the IPG wraps around
the distal portion of the hypoglossal nerve [13,21]. These hypoglossal nerve stimulation systems can
incorporate an implantable chest sensor that monitors respiratory effort. The surgical procedure is
performed under general anesthesia and started with the identification of the hypoglossal nerve [22].
An intimate understanding of N. XII anatomy is required, along with intraoperative neuromonitoring,
to accurately place the stimulation electrode for selective UAS [23].
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connector ports that house the stimulation and pleural pressure-sensing lead connectors. From Hong 
et al. with permission [24]. 
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MN, USA), an IPG with a tripolar half-cuff nerve stimulation electrode and a respiratory sensing lead 
placed against the pleura to detect respiratory effort [25], was reported to significantly improve AHI 
(52.0 ± 20.4 to 22.6 ± 12.1; p < 0.001) in patients with moderate to severe OSA [20], but initial technical 
difficulties such as sensor or hardware malfunction and broken electrodes occurred; (2) a system from 
Apnex Medical (Apnex Medical, Inc., St. Paul, MN, USA), was reported to significantly improve AHI 
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Figure 7. Hypoglossal nerve stimulation. (A) Cuff electrodes encircling the medial branch of the
hypoglossal nerve (nerve = n, muscle = m, gland = g). (B) A pleural pressure-sensing lead is placed
with the ventilatory sensor facing the pleura. (C) Implantable pulse generator (IPG) with profile
connector ports that house the stimulation and pleural pressure-sensing lead connectors. From Hong
et al. with permission [24].

Different systems of nerve electrical stimulation therapy have evolved significantly over the past
years, each offering different ways of acting: (1) Inspire I (Inspire Medical SystemsTM, Maple Grove,
MN, USA), an IPG with a tripolar half-cuff nerve stimulation electrode and a respiratory sensing lead
placed against the pleura to detect respiratory effort [25], was reported to significantly improve AHI
(52.0 ± 20.4 to 22.6 ± 12.1; p < 0.001) in patients with moderate to severe OSA [20], but initial technical
difficulties such as sensor or hardware malfunction and broken electrodes occurred; (2) a system from
Apnex Medical (Apnex Medical, Inc., St. Paul, MN, USA), was reported to significantly improve
AHI values (43.1 ± 17.5 to 19.5 ± 16.7 events per hour, p < 0.05) and Epworth Sleepiness Scale (ESS)
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scores (12.1 ± 4.7 to 8.1 ± 4.4, p < 0.05) from baseline [26,27]; (3) the Aura 6000 Targeted Hypoglossal
Neurostimulation (THN) system (ImThera Medical, Inc., San Diego, CA, USA) is characterized by
continuous nerve stimulation without a respiratory pressure sensor, and the hypoglossal cuff electrode
is placed more proximally than that of a typical IPG [28]. After 12 months of follow-up, the authors
reported significant reductions in AHI (45 ± 18 to 21 ± 16.5 per hour, a 53% reduction; p < 0.001), 4%
oxygen desaturation index (ODI, from 29 ± 20 to 15 ± 16 per hour; p < 0.001), and arousal index (AI)
values (from 37 ± 13 to 25 ± 14 events per hour; p < 0.001) [28]. However, ESS scores did not improve
(from 11 ± 7 to 8 ± 4, p = 0.09) [28]. 4) The Inspire II UAS device (Inspire Medical Systems, Inc., Maple
Grove, MN, USA) is the only device currently approved by the US Food and Drug Administration
(FDA). A sensor between the intercostal muscles detects respiratory effort from the chest, which is
them analyzed by the IPG [29,30].

The Stimulation Therapy for Apnea Reduction (STAR) trial [31] examined the safety and efficacy
of the Inspire Medical Systems device. The study included 126 CPAP-intolerant patients with moderate
to severe OSA. Patients with body mass index (BMI) values greater than 32 kg/m2, AHI > 50 events
per hour, central or positional sleep apnea, and/or concentric palatal collapse were not studied.
During the 12-month extended follow-up period, the AHI and ODI both decreased (each p < 0.0001),
falling from 29.3/h to 9.0 events/h and from 25.4 to 7.4/h, respectively. Secondary outcome measures
showed improved quality of life as measured by the ESS and the Functional Outcomes of Sleep
Questionnaire (FOSQ). Reductions in AHI (>50%) after 36 months and 48 months of follow-up, as well
as improvements in subjective measures of sleepiness and quality of life, have also been reported [32,33].

There is mounting evidence that electrical stimulation of pharyngeal muscles is a promising, safe,
and effective alternative to CPAP for the treatment of moderate to severe OSA. Hypoglossal nerve
electrical stimulation significantly decreases AHI, ODI, and ESS values. The principal challenges
regarding the implementation of UAS relate primarily to three issues. The first is that not all participants
respond to this therapy, probably due to variable response to electrical activity and different mechanical
displacement of the muscle in different patients. In the STAR trial, 43 of 126 (34%) participants did
not respond. The second is the high cost. The third is the invasive nature of this treatment. These
conditions limit accessibility in publicly funded healthcare systems [31,34]. Specific technical features
will be needed to improve implantable devices effectively in the near future.

5. Pharmacological Treatment

Until a few months ago, very limited progress had been made in developing pharmacotherapies
for OSA treatment, and there is currently no pharmacotherapy for OSA. The motor system controlling
ventilation is complex, with neuronal activity reduced at sleep onset. The known reductions in
upper airway muscle activity during sleep through serotonergic, noradrenergic, and cholinergic
pathways have been investigated with the goal of improving pharmacological OSA treatment. These
neurochemical mechanisms that are involved in sleep/wake-dependent control of respiration have led
to the main hypothesis regarding pharmacological control for OSA.

Serotonin (5-hydroxytryptamine (5-HT)) has excitatory effects on hypoglossal motoneurons,
and during sleep, there is a reduction in its delivery to upper airway dilator motor neurons [35,36].
At first, this decrease in endogenous serotonin was considered the main mechanism of upper airway
collapsibility during sleep, secondary to the loss of GG activity in this state; this hypothesis is known as
“the serotonin hypothesis.” Different works in animals and humans have tested the effect of serotonin on
GG stimulation. Studies in rats demonstrated REM sleep–like GG atonia caused by loss of serotonergic
inputs [36]. However, the acute effects of serotonin agents in humans increased GG activity during
NREM sleep but did not improve OSA severity (measured by AHI) [37] or achieved limited success
when combined with other drugs [38].

The central reduction in norepinephrine from wakefulness to sleep has been identified as one of
the main causes of upper airway hypotonia. Recent research in animals has shown that noradrenergic
processes can play a role in the mechanism of pharyngeal hypotonia that occurs during sleep [39].
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Terazosin (anα1-adrenergic receptor antagonist) reduced GG activity during wakefulness and non-REM
(NREM) sleep in rats, while phenylephrine (an α1 agonist) increased GG activity during this state,
demonstrating that noradrenergic activity during NREM plays an important role in the hypotonia of
pharyngeal muscles during sleep. Taranto-Montemurro et al. [40] tested the effect of desipramine (a
tricyclic antidepressant with a relevant noradrenergic effect) in healthy adult subjects and found that it
mitigated the decrease in tonic GG activity that occurs from wakefulness to NREM sleep (significantly
increasing baseline tonic GG electromyography nearly to waking levels), reducing airway collapsibility
but not altering GG phasic activity, muscle responsiveness to intrapharyngeal negative pressure, sleep
architecture, or sleep efficiency. The same group also tested desipramine in OSA patients and found a
reduction in pharyngeal collapsibility, but with limited effect on OSA severity as measured by AHI [41].

Nevertheless, REM atonia seems to be mediated by a muscarinic effect. Grace et al. [42] showed
that muscarinic receptor antagonism in the hypoglossal motor pool prevents the inhibition of GG
activity throughout REM sleep without pronounced effects during wakefulness or NREM in rats,
demonstrating that GG muscle tone in this phase is regulated by muscarinic receptors.

Based on this knowledge, a combination therapy (a norepinephrine reuptake inhibitor and a
muscarinic blocker) designed to optimally modulate GG muscle tone across NREM and REM sleep
was tested [42] (Figure 8). For the first time, Taranto-Montemurro et al. [43] showed an AHI decrease
(28.5 to 7.5 events/h; median change: 63%; p < 0.001) in a one-night randomized placebo-controlled
double blind crossover trial in 20 patients and an increase in the oxygen saturation nadir in patients
with mild to moderate OSA treated with ato-oxy, a combination of atomoxetine (a norepinephrine
reuptake inhibitor) and oxybutynin (an antimuscarinic agent). The effect seems to be directly related
to the effect on the GG muscle, and the authors found greater responsiveness to ato-oxy than to
placebo in GG electromyography measurements. When the drugs were tested separately (nine
patients), there were no significant effects on AHI. This approach has been the first effective OSA
pharmacotherapy, and it has been a major step for OSA pharmacological treatment, but additional
efforts should be made to demonstrate the sustained effect of the drugs over time and to identify
the clinical response, doses, side effects, and groups of patients in whom the drug can be effective.
Important considerations about this combination of drugs should be taken into account: (1) the effect
has been tested only in a one-night trial. The sustained effect of the drugs should be demonstrated
in longer trials to confirm the efficacy of the treatment in the long term. (2) Since atomoxetine can
produce an increase in blood pressure and heart rate, it is contraindicated in severe cardiovascular
conditions (which are common in OSA patients). (3) The combination did not reduce arousals and
increased N2; furthermore, REM sleep suppression has been known to occur in relation to oxybutynin.
Sleep architecture should be studied with different doses and longer treatments, and the effects of the
treatment on somnolence and tiredness should also be examined. (4) The clinical response has not
been evaluated. Event suppression is important in OSA control, but symptom control should also be
demonstrated. (5) The effect was studied in only 20 patients; the response needs to be determined in
a larger population. (6) CPAP-treated patients stopped treatment only during the study night. It is
likely that a longer washout period would be more effective in determining the real AHI (five out of
20 participants exhibited an AHI<10 events/h on placebo). (7) A group of patients (8 of the 15 with
AHI>10 events/h) still had a residual AHI≥10 events/h after treatment, suggesting that the effectiveness
of the potential therapy could be specific to a subgroup of patients and that testing is needed in different
OSA phenotypes (subgroups of resistant OSA patients).
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Obviously, these findings open exciting new possibilities for OSA treatment, probably for patients
with a specific phenotype and/or in combination with other treatments, but it would be premature to
use this combination as a treatment option for OSA.

6. Myofunctional Therapy (MT)

The pathophysiological causes of OSA in adults include an anatomically compromised upper
airway (narrow pharynx or increased upper airway length), inadequate responsiveness of the
pharyngeal dilator muscles during sleep, a low respiratory arousal threshold, and a high loop gain [45].
However, the pathophysiology of OSA in childhood is complex and poorly understood. Currently,
the most commonly hypothesized main cause of pediatric OSA is an anatomically (adenotonsillar
hypertrophy) or functionally narrowed upper airway [46].

As mentioned, upper airway dilator muscles can contribute to the genesis of OSA because they
are crucial to the maintenance of pharyngeal patency. As previously demonstrated, poor GG muscle
responsiveness to negative pharyngeal pressure and changes in the activity of oropharyngeal muscles
during sleep play very important roles in maintaining an open airway during sleep. For this reason,
recent studies have explored the effects of oropharyngeal exercises and other airway activity (singing;
playing the didgeridoo or other instruments) that focus oral cavity and oropharyngeal structures as a
complementary technique for treating OSA [47,48]. Myofunctional therapy (MT) or oropharyngeal
exercises that lead to changes in dysfunctional upper airway muscles have been suggested to be
effective for reducing OSA severity in adults along with associated symptoms, especially when the
severity of the disease is moderate [49].

Since 1918, MT has been described to increase mandibular growth and to improve nasal breathing
and facial appearance [50]; subsequently, in the 1990s, Guimarães et al. [51] proposed MT as a new
tool in the management of OSA. However, as the use of full-night polysomnography (PSG) for the
diagnosis of OSA was not widespread by that time, only the clinical situation and the symptoms of the
patients were initially considered to apply this therapy. In recent years, partly due to the dissemination
of knowledge and partly due to the increasing availability of resources, OSA has attached the attention
of many different specialists, and there have been a growing number of studies exploring the effect of
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MT in OSA [49,52–55]. MT is a treatment method for subjects with orofacial myofunctional disturbance
that may interfere with orofacial development or function. This approach is built on isotonic and
isometric exercises that promote the sensitivity, proprioception, mobility, coordination, and strength
of orofacial structures [49,52]. MT also promotes the appropriate efficiency of respiration and other
functions such as mastication, swallowing and speech. Oropharyngeal exercises are derived from
speech language pathology and include different types of soft palate, tongue, and facial muscle
exercises as well as stomatognathic function exercises. The most extensive MT exercises were described
by Guimarães et al. [49], and this protocol was applied in other studies in its original form or with
some modifications [56].

In randomized studies evaluating the effect of MT on sleep-disordered breathing based on full
PSG data, results have shown a significant reduction in AHI in adults with moderate OSA [49,56–58],
along with a reduction in AI [49] and an increased minimum percentage of oxygen saturation [49].
One recent systematic review and meta-analysis included a total of nine studies performed in adults
(120 patients, age 44.5 ± 11.6 years) that reported PSG and/or sleepiness outcomes and evaluated the
impact of MT on OSA [59]. The majority of the adult patients had moderate OSA. The pre- and post-MT
AHI decreased from 24.5 ± 14.3/h to 12.3 ± 11.8/h, with a mean difference of −14.26 (95% CI −20.8–7.54,
p > 0.0001), which was a 50% reduction. The lowest oxygen saturation improved in 82 patients from
83.9 ± 6.0% to 86.6 ± 7.3%. Only two studies (including 43 patients) were randomized controlled trials
(RCTs) [49,55]. The nonrandomized studies reported that after MT, patients with mild or moderate
OSA showed significant reductions in AHI [60–62] and AI [60–62] and an increase in lowest oxygen
saturation [60–62]. Only one study analyzed the effects of MT in a group of patients with severe OSA;
this study showed a reduction in mean AHI, but the reduction was nonsignificant [62].

With regard to snoring, Ieto et al. [58] performed an RCT in 39 patients to evaluate the effects of
oropharyngeal exercises in mildly symptomatic patients with a primary complaint of snoring and a
diagnosis of primary snoring or mild to moderate OSA. The results showed a subjective improvement
in snoring intensity reported by a bed partner or perceived by the patient as well as significant decreases
in the snore index (total number of snores/total sleep time) from 99.5 to 48.2, p = 0.041, and in the total
snore index (sound intensity power/total sleep time) from 60.4 to 31.0, p = 0.033. Other authors also
showed a 72.4% reduction in snoring after MT (14.05 ± 4.89% to 3.87 ± 4.12% before and after MT,
respectively, p < 0.001) [60].

Subjective sleepiness, assessed by the ESS, also improves after MT. Camacho et al. [59] showed a
significant improvement in sleepiness after MT, with a reduction from 14.8 ± 3.5 to 8.2 ± 4.1 in the ESS in
75 patients. In a systematic review [63], patients with a mean baseline ESS score ranging from 12 ± 2.6
to 15.4 ± 2.3 revealed improved scores after MT, with a mean reduction of six points [49,56,57,60,62].
However, in a group of patients who were not sleepy [56], with a median ESS score of 7.0 (3–11),
and in a group of patients with severe OSA and an ESS score of 20.9 ± 6.2 [62], no significant changes
were identified.

The effect of MT on quality of life has also been studied, and quality of life seems to improve after
treatment with MT alone or in association with CPAP [56]. In two studies that investigated morning
headache symptoms [60,61], only one detected a reduction (from 60% to 20%) in the number of patients
with this complaint [60].

In children, a prospective RCT was conducted in which postadenotonsillectomy patients were
randomized to either oropharyngeal exercises or a control group [64]; the investigators found that after
two months of MT, the AHI reduced from 4.87 ± 3.0/h to 1.84 ± 3.2/h (p = 0.004, a 62% reduction) in
the treatment group. The control group had minimal changes in AHI during the 2-month interval.
In a retrospective review, Guilleminault et al. [52] evaluated 24 children who were treated with a
combination of adenotonsillectomy and palatal expansion (AHI 0.4 ± 0.3/h). Eleven of the children
received MT (intervention group), and 13 children did not receive MT. They were followed up for
four years; after this period, the children who received MT remained cured of OSA (AHI 0.5 ± 0.4/h),
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whereas the children who were never trained to perform the exercises subsequently experienced OSA
recurrence (AHI 5.3 ± 1.5/h).

In summary, MT is effective for the treatment of OSA in adults, reducing AHI, AI, and snoring,
as well as improving subjective symptoms related to daytime sleepiness, sleep, and quality of life,
mainly in mild to moderate OSA. However, long-term studies are needed. In children with residual
apnea after adenotonsillectomy, MT sustainably decreases the AHI.

7. Clinical Applicability

OSA is a heterogeneous and multicomponent syndrome that requires a detailed evaluation
(clinical presentation, comorbidities, physical exploration, sleep test, etc.) to make a therapeutic
decision. There is no ideal treatment for all OSA patients, and monotherapy is an error management
strategy for most patients. Therapies that target one or more of these causes can lead to a new approach
in OSA treatment. Intensive behavioral lifestyle interventions in diet, exercise, sleep hygiene, avoiding
alcohol and sedatives, and sleeping in a supine position are mandatory in every patient. The reversible
causes of OSA should always be explored, and these issues, if present, should be the target of first-line
therapy. When a definitive treatment is not possible, different therapeutic options should be considered,
and a combination of treatment could be necessary. For this aim, a better characterization of the
mechanism involved in OSA, upper airway narrowing due to anatomical factors and non-anatomical
phenotypes is needed for a customized treatment.

New therapeutic options centered on GG function could play a role in this treatment strategy in
isolation in specific groups of patients or in combination with other therapies. Classical treatments
such as CPAP and OAs have failed to demonstrate universal effectiveness in all types of patients.

Hypoglossal nerve stimulation has achieved sustained and significant improvement in AHI,
quality of life and sleepiness, but its success depends on individual characteristics, and some subjects
are nonresponders. This approach could be an additional effective tool in well-selected patients with
moderate to severe OSA; however, it is invasive and costly. Moreover, hypoglossal nerve stimulation
could be useful in patients with severe sleep apnea who do not tolerate CPAP, but the placement of the
stimulator requires experience. Additionally, this treatment modality is not useful in patients with
morbid obesity, and candidates should be evaluated carefully.

Pharmacological treatment is a new area of research in which initial positive results have been
published. The drug combination ato-oxy has been demonstrated to significantly decrease AHI and
improve oxygen saturation during sleep in OSA patients. This combination would probably be a good
option in certain groups of patients in the future, but larger and longer studies are needed. At present,
it would be premature to use pharmacological agents to increase muscle activity for OSA treatment.

MT has demonstrably improved AHI, nadir saturation and subjective sleepiness. This approach
could be a useful tool in nonobese patients with mild to moderate OSA or could improve the
effectiveness or adherence of CPAP treatment by reducing the absolute pressure required. One of the
most important limitations is that MT requires high patient adherence to the therapy because exercises
must be performed by the patient at least two to three times per day. This condition limits the clinical
applicability of MT.

OSA management must be personalized and avoid a one-size-fits-all approach. In evaluating
the pathophysiological causes, it is mandatory to apply potential novel and/or combined therapeutic
options that could be used independently or in combination with classical OSA therapies.

Table 1 summarizes the main results and conclusions from OSA-GG treatment, and Figure 9
summarizes the patient phenotype that can benefit from each treatment and possible indications.
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Table 1. Summary of the main results in OSA-GG treatment and conclusions.

Reference Severity n Treatment Follow-Up Main Effect Conclusion

Hypoglossal Nerve Electrical Stimulation

Strollo,
2014 [31]

Moderate to
severe OSA 126

Inspire II Upper
Airway

Stimulation
12 months

Decreases AHI 68%
(from 29.3 to 9.0 events/h).
Decreases ODI score 70%
(from 25.4 to 7 events/h).

Improve EDS and
quality of life.

(1) Safe and effective for the treatment of
moderate to severe OSA.

(2) Could be an alternative to CPAP.
(3) Significant improvements in objective

(AHI) and subjective measurements.
(4) Its invasive nature limits its application.

Woodson,
2016 [32]

Moderate to
severe OSA 116

Inspire II Upper
Airway

Stimulation
36 months

Decreases AHI > 50%
(from 28.2 to 6.2 events/h).
Improves quality of life.

Gillespie,
2017 [33]

Moderate to
severe OSA 91

Inspire II Upper
Airway

Stimulation
48 months Improves ESS and

quality of life.

Pharmacological Treatment

Berri,
1999 [37] Severe OSA 8 Paroxetine Single dose

Increases peak inspiratory
GG activity during NREM.

Does not improve AHI.
(1) Exciting new possibilities for OSA
treatment. (2) Probably suitable for a

determined phenotype of patients and/or in
combination with another treatments.
(3) It would be premature to use this
combination as a treatment option for

OSA at present.

Prasad,
2010 [38] AHI > 10 35 Ondansetron +

fluoxetine
Days 7, 14

and 28

Decreases AHI 40% at high
dose (12.9 events/h

reduction in AHI). Does not
improve EDS.

Taranto-
Montemurro,

2016 [41]
AHI > 15 14 Desipramine Single dose

Decreases pharyngeal
collapsibility (Pcrit).

Very little effect on AHI.



J. Clin. Med. 2019, 8, 1754 14 of 18

Table 1. Cont.

Reference Severity n Treatment Follow-Up Main Effect Conclusion

Taranto-
Montemurro,

2019 [43]

15/20
patients with

OSA on
placebo

(AHI>10
events/h)

20 Atomoxetine +
oxybutynin Single dose

Median AHI change of 63%
(from 28.5 to 7.5 events/h).

Increases nadir oxygen
saturation. Increases
GG responsiveness.

Myofunctional Therapy

Guimarães,
2009 [49]

Moderate
OSA 31 Upper airway

exercises 3 months

Decreases AHI from 22.4 to
13.7/h. Increases nadir

oxygen saturation.
Improves EDS.

(1) It could be a useful tool in nonobese
patients with mild to moderate OSA. (2) Can
improve the effectiveness or patient adherence
of CPAP treatment by reducing the absolute

pressure required. (3) One of the most
important limitation is that it requires high

patient adherence to the therapy.

Diaferia,
2013 [55]

Moderate to
severe OSA 100 Speech therapy 3 months Improves quality of life.

OSA: obstructive sleep apnea; AHI: apnea-hypopnea index; ODI: oxygen desaturation index; EDS: excessive daytime
sleepiness; CPAP: continuous positive airway pressure; ESS: Epworth Sleepiness Scale; GG: genioglossus.

8. Conclusions

OSA is a heterogeneous condition with multifactorial pathophysiology. New therapeutic strategies
need to be added to classical OSA management for complete control of the disease. OSA treatments
focusing on GG muscle in isolation may be problematic, but these therapies can be useful in specific
groups of patients or in combination with another treatment.

Nerve electrical stimulation is a safe and effective treatment for moderate to severe OSA patients
and could be an alternative to CPAP. The main problems with this treatment are its cost and its
invasive nature.

Exciting new possibilities for OSA treatment have emerged with the recent results of
pharmacological treatment for OSA, but it would be premature to use ato-oxy as a treatment option for
OSA at present. In the future, it could be useful for a specific patient phenotype and/or in combination
with other treatments.

MT could be a useful tool in nonobese patients with mild to moderate OSA. It can improve the
effectiveness or patient adherence of CPAP treatment by reducing the absolute pressure, but it requires
high patient adherence to the exercise regimen itself.
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